e

e

3

IR

kv

§d

AD-A204 279

AVF Control Number: AVF-VSR-018
SZ7~AVF-018

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: B88052411.09118
SYSTEAM KG
SYSTEAM Ada Compiler VAX/VNS
Version 1.8
VAX 8530

Completion of On-Site Testing:
88-05-24

Prepared By:
IABG m.b.H., Dept SIT
Einsteinstrasse 20
8012 Ottobrunn
Federal Republic of Germany

@

Prepared for: ’
Ada Joint Program Office DT'(
United States Department of Defense et
Vashington, D.C. 20301-3081 ELECTLC

FEB 1 4 1989

“SH

Ada is a registered trademark of the United States Government
(Ada Joint Program Office),

DISTRIBUTION STATEMENT X

Approved for public relecase;
Distribution 710elexd

» 89 2 13 097

e ————————————e 4

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
" READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFOBE COMPLETEING FORM

1. REPORT NUMBER j2. GOVT ACCESSION NO. |3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
Ada Comp11er Vahdatlgn Summary Report: 24 May 1988 to 24 May 1989
SYSTEAM K a Comp:.ler AX VMS,
Version 1. é VAX 8530 (Host an 'farg 6. PERFORMING ORG. REPORT NUMBER

(Pros24 1. 091

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
IABG, .
Ottobrunn, Federal Republic of Germany.

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

AREA & WORK UNIT NUMBERS

IABG,

Ottobrunn, Federal Republic of Germany.

11. CONTROLLING QOFFICE NAME AND ADDRESS 12. REPORT DATE

Ada Joint Program Office 24 May 1988

United States Department of Defense T RUWBER UF PAGES

Washington, DC 20301-3081 ‘ 9 p

14, MONITORING AGENCY NAME & ADDRESS(ifdifferent from Controlling Office) 15. SECURITY CLASS (of this report)
UNCLASSIFIED

IABG, 158. QECEASSEF1CATION/DOWNGRADING

Ottobrunn, Federal Republic of Germany. N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (ofthe abstract entered in Block 20. If different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

W. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
SYSTEAM Ada Compiler VAX/VMS, Version 1.8, SYSTEAM KG, [IABG, VAX 8530 under VMS, Version 4.7
(Host and (Target), ACVC 1.9.

DD fume 1473 coITION OF t NOV 65 IS OBSOLETE
1 JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

_

L

o
Ty

i B B = B

o
‘{ .f:,

3

€

Ada Compiler Validation Summary Report:
Compiler Name: SYSTEAM Ada Compiler VAX/VMS
Compiler Version: Version 1.8
Certificate Number: 88052411.09118
Host and target: VAX 8530 under VMS, Version 4.7
Testing Completed 88-05-24 Using ACVC 1.9

This report has been reviewed and is approved.

IABG m.b.H., Dept SZTV

Dr. H. Hummel
Einsteinstrasse 20

8012 Ottobrunn

federal Republic of Germany

VA

Ada Validation Organization
Dr. John F. Kramer

Institute for Defense Analyses
Alexandria VA 22311

Ada J&int Program Office
Virginia L. Castor
Director

Department of Defense
Washington DC 20301

r‘.’.; ?

W

2

g g %Y

i

L

KIS

()

n

4

CHAPTER 1

b b b gl
« ¢ o e o
U W =

CHAPTER

~n

N

CHAPTER

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

N -

e B R e B T I A K O

(75 N N

CONTENTS

INTRODUCTION

PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
USE OF THIS VALIDATION SUMNARY REPORT 1-2
REFERENCES v v v v v v v 1-3
DEFINITION OF TERMS 1-4
ACVC TEST CLASSES, 1-§

TEST INFORMATION

TEST RESULTS v v v vt et e e e e e e w s 3-1
SUNMARY OF TEST RESULTS BY CLASS 3-1
SUMMARY OF TEST RESULTS BY CHAPTER 3-2
VITHDRAUN TESTS + . « v ¢ v v v v v v 3-2
INAPPLICABLE TESTS + ¢ v ¢ v v v v o . 3-2
TEST, PROCESSING, AND EVALUATION MODIFICATIONS . . 3-4
ADDITIONAL TESTING INFORMATION 3-4

Prevalidation ¢« . v v v v v v v 3-4

Test Method ¢ ¢ ¢ v v v v v v v o 3-4

Test Site ¢ 3-5

DECLARATION OF CONFORNMANCE

APPENDIX F OF THE Ada STANDARD

TEST PARAMETERS

Acocession For

VITHDRAWN TESTS ‘ NTIS GRA&I 7’

DTIC TaAR
Unanncunced

Justifivation |

By

Speeln

R

Distribution/ o
Availability Cedes
) !Atailf an"‘:-/o’r

139

&P

Und

'ﬁ'," !

v

CHAPTER 1
INTRODUCTION

This validation Summary Report 9+¥saa describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/NIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the St‘“diiii)

C%ven though all validated Ada compilers conform to the Ada Standard, it
nust be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the waximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardvare, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.”

—The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to arn Ada compiler and
evaluating the results.~ The purpose of validating is to ensure conformity
of the compiler to the A;; Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
inplementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

T (e

1-1

Las
T

‘
W

q
&

i

ty

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUNNARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted under the direction of the AVF
according to procedures established by the Ada Joint Program Office and
administered by the Ada Validation Organization (AVO). On-site testing was
completed 88~05-24 at SYSTEAN KG at Karlsruhe.

1.2 USE OF THIS VALIDATION SUNMARY REPORT

Consistent with the national laws of the originating country, the AVD may
make full and free public disclosure of this report. in the United States,
this is provided in accordance with the “freedom of Information Act" (§
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

OUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Vashington DL 20301-3081

or from:

IABG mn.b.H., Dept SIT
Einsteinstrasse 20

8012 Ottobrunn

Federal Republic of Germany

1-2

%5

a3

2

L

-

B &)

G

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses

. 1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Beference Manual for the Ada Prograeping Language.
ANSI/MIL-STD-1815A, February 1983 and 150 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Coepiler Validatiop Capability Ipplemsniers! Gulde, SofTech,
Inc., December 1986.

4. Ada Cowpller Yalidatiop Capabillity User’'s Guide, December 1986,

#3

CZ I

3 K

i)

)
L%

ot

A

INTRODUCTION
1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the

Commentary point addressed by a comment on the Ada Standard. These
conments are given a unique identification number having the
form Al-ddddd.

Ada Standard ANSI/MIL-STD-1815A, february 1983 and 150 8652-1987.
Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Agd3 Lompiler Yalidation Procedures and
Guldellnes.

AVD The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a wuniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to easure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicablie An ACVC test that uses features of the 1language that a

test compiler is not required to support or may legitimately
support in a way other than the one expected by the test.

Passed test An ACVC test for which a3 compiler generates the expected

result.
Target The computer for which a compiler generates code.
Test A program that checks a compiler's conformity regarding a

particular feature or a combination of features to the Ada
Standard, In the context of this report, the term is used to
designate a single test, which may comprise one or more

files.
Withdrawn An ACVC test found to be incorrect and not wused to check
test conformity to the Ada Standard. A test may be incorrect

1-4

3

9

Fha

84

)
;' M

JF_,
AN

INTRODUCTION

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured wusing the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and £ tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. There are no explicit program components in a Class A test
to check semantics. for example, 3 Class A test checks that reserved words
of another language (other than those already reserved in the Ada language)
are not treated as reserved vords by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. (Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each C(lass C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it s
executed.

Class D tests check the compilation and execution capacities of a compiler,
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class £ test is self-checking and produces @ NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an iwmplementation to reject programs containing some
features addressed by Class £ tests during compilation. Therefore, a Class
E test is passed by a compiler i it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

A
E)

R

w

i

{.

!

‘:;:{

INTROOUCTION

Class L tests check that incomplete or illegal Ada programs involving
sultiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error wmessage before any
declarations in the wmain program or any wunits referenced by the main

program are elaborated.

Two library units, the package REPORT and the procedure CHECK_FILE, support
the self-checking features of the executable tests. The package REPORY
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK_FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK_FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units sre operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of S5 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A 1list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
ingpplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not wused in testing a compiler. The tests
vithdrawn at the time of this validation are given in Appendix D.

1-6

LY

3
=3

s

%3

ny

¥

k'.. (4’

CHAPTER 2
CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED
The candidate compilation system for this validation was tested under the
following configuration:

Compiler: SYSTEAM Ada Compiler VAX/VMS, Version 1.8

ACVC version: 1.9

Certificate Number: B8052411.09118

Host and Target Computer:

Machine: VAX 8530
Operating System: VMS Version 4.7
Memory Size: 32 MB

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
3 compiler in those areas of the Ada Standard that permit implementations
to differ, Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

2-1

e
-{\—;

63

v
Ui
R

U3

(\'.r','_‘.'

}

o

&

P

?

CONFIGURATION INFORMATION

Capacities.

The compiler correctly processes tests contairing loop statements
nested to 65 levels, block statements nested to 65 levels, and
recursive procedures separately compiled as subunits nested to 17
levels. it correctly processes a compilation containing 723
variables in the same declarative part. (See tests DSSAO3A..H (8
tests), DS6001B, D640OSE..E (3 tests), and D29002K.)

Universal integer calculations.

An implementation 1is allowed to reject universal integer
calculations having values that exceed SYSTEN.MAX_INT. This
inplementation processes 64 bit inteper calculations., (See tests
D4A002A, D4A002B, D4A004A, and D4A004B.)

Predefined types.

This implementation supports <the additional predefined types
SHORT_INTEGER, SHORT_SHORT_INTEGER, SHORT_FLOAT, LONG_FLOAT and
LONG_LONG_FLOAT in the package STANDARD., (See tests BB600IC and
B86001D.)

Based literals,

An implementation is 2llowed to reject a based literal with a
value exceeding SYSTEM.MAX_INT during compilation, or it may raise
NUMERIC_ERROR or CONSTRAINT_ERROR during execution. This
inplementation raises CONSTRAINT_ERROR during execution. (See
test E24101A.)

Expression evaluation.

Apparently no default initialization expressions for record
components are evaluated before any value is checked to belong to
a component’s subtype. (See test C32117A.)

Assignments for subtypes are performed with the same precision as
the base type. (See test (357128.)

This implementation uses no extra bits for extra precision. This
igglementation uses all extra bits for extra range. (See test
C35903A.) '

Ne exception is raised when 2n integer 1literal operand in a

comparison or membership test is outside the range of the base
type. (See test (45232A.)

2-2

CONFIGURATION INFORMATION

& No exception is raised when 3 literal operand in a f{ixed-point

b comparison or membership test is outside the range of the base
type. (See test C45252A.)

& Apparently underflov is not gradual. (See tests (45524A..2.)

w Rounding.

oy The method used for rounding to integer is apparently round avay

= from zero. (See tests C46012A..Z.)

o The method used for rounding to 1longest integer is apparently

round away from 2ero. (See tests C46012A..1.)

: The method used for rounding to integer in static wuniversal real
~ expressions is apperently round away from zero. (See test
C4A014A.)

22

Array types.

1

An implementation is allowed to raise NUMERIC_ERROR or
CONSTRAINT_ERROR for an array having a °'LENGTH that exceeds
STANDARD . INTEGERLAST and/or SYSTEM.MAX_INT. For this
implementation:

FATIS Y
(348

Declaration of an array type or subtype declaration with more than
SYSTEM.NAX_INT components raises no exception. (See test
C36003A.)

¢

%)

No exception is raised when 'LENGTH is applied to an array type
with INTEGER'LAST + 2 components. (See test C36202A.)

\:."
o4

¢

A

No exception is raised when 'LENGTH is applied to an array type
with SYSTEM.MAX_INT + 2 components. (See test C36202B.)

g

A packed BOOLEAN array having @ 'LENGTH exceeding INTEGER'LAST
raises CONSTRAINT_ERROR when the array type is declared. (See
2 test £52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises CONSTRAINT_ERROR when the array type is
declared. (See test C52104Y.)

. A null array with one dimension of length greater than
= INTEGER’LAST may raise NUNERIC_ERROR or CONSTRAINT_ERROR either

vhen declared or assigned. Alternatively, an . mplementation may
- accept the declaration. However, lengths must match in array
i slice assignnents. This implementation raises CONSTRAINT_ERROR
when the array type is declared. (See test £52103Y.)

3

=

-
.

%7

it

wd ©y

o

Y

CONFIGURATION INFORMATION

In assigning one-dimensional array types, the expression does not
appear to be evaluated in its entirety before CONSTRAINT_ERROR is
raised when checking whether the expression’s subtype is
compatible vith the target’'s subtype. In assigning
two-dimensional array types, the expression does not appear to be
evaluated in its entirety before CONSTRAINT_ERROR is raised when
checking whether the expression’s subtype is compatible with the
target's subtype. (See test CS52013A.)

Discriminated types.

During compilation, an impliementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications. (See test
E38104A.)

In assigning record types with discriminants, the expression does
not appear to be evaluated in its entirety before CONSTRAINT_ERROR
is raised when checking whether the expression's subtype s
compatible with the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of 2 multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C432078B.)

In the evaluation of an aggregate containing subaggregates, atll
choices are evaluated before being checked for identical bounds.
(See test E432128.)

All choices are evaluated before CONSTRAINT_ERROR is raised if
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

Representation clauses.
An implementation might legitimately place restrictions on
representation clauses used by some of the tests. 1f a

representation clause is used by a test in a way that violates a
restriction, then the implementation must reject it.

2-4

wn

oA

w2

“d,
i.\'(_i‘

CONFIGURATION INFORMATION

Enumeration representation clauses containing noncontiguous values
for enumeration types other tham character and boolean types are
supported. (See tests C35502I..J, C35502M..N, and A3900SF.)

Enumeration representation clauses containing noncontiguous values
for character types are supported. (See tests (355071..J,

C35507H..N, and CS55B16A.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE => 0, TRUE => 1) are
supported. (See tests C35508I..J and C35508M..N.)

Length clauses with SIZE specifications for enumeration types are
supported. (See test A390058.)

Length clauses with STORAGE_SIZE specifications for access types
are supported. (See tests A39005C and C87B62B.)

Length clauses with STORAGE_SIZE specifications for task types are
supported. (See tests A39005D and CB7B62D.)

Length clauses with SMALL specifications are supported. (See
tests A39005E and C87B62C.)

There are restrictions for 2alignment clauses within record
representation clauses. (See test A390056.)

Length clauses with SIZE specifications for derived integer types
are supported. (See test C87B62A.)

Pragmas.

The pragma INLINE is supported for procedures. The pragma INLINE
is supported for functions. (See tests LA3004A, LA3004B, EA3004C,
EA3004D, CA3004E, and CA3004f.)

Input/output.

The package SEQUENTIAL_IO can be instantiated with unconstrained
array types and record types with discriminants without defaults.
(See tests AE2101C, EE2201D, and EE2201E.)

The package DIRECT_IO can be instantiated with unconstrained array
types and record types with discriminants vithout defaults. (See
tests AE2101H, EE2401D, and EE24016.)

Modes IN_FILE and OUT_FILE are supported for SEQUENTIAL_I0. (See
tests CE21020 and CE2102E.)

2-5

W

ht

L

B

i!)},)

'~‘.‘|’f'

CONFIGURATION INFORMATION

Modes IN_FILE, OUT_FILE, and INOUT_FILE are supported for
DIRECT_I0. (See tests CE2102F, CE2102], and CE2102J.)

RESET and DELETE are supported for SEQUENTIAL_IO and DIRECT_IO.
(See tests CE21026 and CE2102K.)

Dynamic creation and deletion of files are supported for
SEQUENTIAL_IO and DIRECT_10. (See tests CE2106A and CE2106B.)

Overwriting to a sequential file truncates the file to the 1last
element. (See test CE22088.)

An existing text file can be opened in OQUT_FILE wmode, can be
created in OUT_FILE wode, and can be created in IN_FILE mode.
(See test EE3102C.)

More than one internal file can be associated with each external
file for text 1/0 for both reading only. (See tests CE3111A..E (5
tests), CE3114B, and CE311SA.)

More than one internal file can be associated with each
non-temporary external file for sequential 1/0 for reading only.
(See tests CE2107A..D (4 tests), CE2110B, and CE2111D.)

More than one internal <file can be associated with each
non-temporary external file for direct 1/0 for reading only. (See
tests CE2107F..1 (4 tests), CE2110B, and CE2111H.)

An internal sequential access file and an internal direct access
file cannot be associated with a single external file for writing.
(See test CE2107E.)

An external file associated with more than one internal file
cannot be deleted but closed for SEQUENTIAL_IO, DIRECT_I10, and
TEXT_I0. (See test CE21108.)

Temporary sequential files are not given names. Temporary direct
files are not given names. (See tests CE2108A and CE2108C.)
Generics.

Generic subprogram declarations and bodies can be compiled in
separate compilations. (See tests CA1012A and CA2009F.)

Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C, BC3204(C, and BC3205D.)

Generic unit bodies and their subunits can be compiled in separate
compilations. (See test CA3011A.)

2-6

CHAPTER 3
TEST INFORMATION

3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. VWhen this compiler was
tested, 27 tests had been withdrawn because of test errors. The AVF
determined that 81 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing. Modifications
to the code, processing, or grading for 13 tests were required to
successfully demonstrate the test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULYS BY CLASS

RESULT TEST CLASS TOTAL
Y- DU R Y | R SO,
Passed 109 1049 1776 17 17 46 3014

Inapplicable 1 rd 77 0 1 0 81
Withdrawn 3 2 - 21 0 1 0 27
TOTAL 113 1053 1874 17 19 46 3122

3-1

@

@

e -

Y

o

% &

L0

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
........... SO U< SRV - S - Sy QU - R S0 | 20 § D ¥ S0 v I V. S
Passed 182 569 644 245 166 98 142 326 137 36 234 3 232 3014
Inapplicable 22 3 30 3 0 o0 1 1 0 0 0 0 21 81
Vithdrawn 2 14 3 0 0 1t 2 0 0 O0 2 1 2 27
TOTAL 206 SB6 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 VITHDRAWN TESTS

The following 27 tests were withdravn from ACVC Version 1.9 at the time of
this validation:

B28003A £28005C C34004A €35502°P A35902C
C35904A C35904R C3SA03E C3SA03R C372134
€372134 €37215¢C C37215E €372156 C37215H
€38102(C C41402A (453324 C45614(A74106C
(850188 C878048 CC13118 BC3105A AD1AD1A
CE2401H CE3208A

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn, The applicability of 2 test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt s not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 81 tests were inapplicable for the
reasons indicated:

Tests C24113D..Y (22 tests) and C45621Q..7 (10 tests) contain
lines of lengths greater than 80 characters which is not supported
by this compiler.

3-2

T

L2

)

&

A

Li?

St

g

Ty
sl

¢

‘-.‘! ~,"

TEST INFORMATION

A390056 uses an alignment clause with an alignment of 8 within @
record representation clause.

C34007P, C34007S are expected to raise. CONSTRAINT_ERROR. this
implementation optimizes the code at compile time on lines 201 and
217 respectively, thus avoiding the operation which would raise
CONSTRAINT_ERROR and so no exception is raised. The AVO ruled
this behavior acceptable and the test NA.

CA1401A is expected to raise CONSTRAINT_ERROR for the -evaluation
of certain attributes, however this implementation derives the
values from the subtype of the prefix at compile time, 3s &llowed
by 11.6(?) LRM. Therefore elaboration of the prefix is not
involved and CONSTRAINT_ERROR is not raised. The AVO ruled this
behavior acceptable and the test NA.

The follovwing tests use LONG_INTEGER, which is not supported by
this compiler:

€45231C €45304(C45502C €45503C C45504C
CAS504F C45611C €45613C C45631(C C45632(
B52004D C55807A B5S5BOYC

C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point
base types which are not supported by this compiler.

C455310, CA5531P, (455320, and C45532P use coarse 48-bit
fixed-point base types which are -not supported by this compiler.

C47004A is expected to raise CONSTRAINT_ERROR whilst evaluating
the comparison on tine 51, but this compiler evaluates the result
vithout invoking the basic operation qualifier (as allowed by
11.6(7) LRM) which would raise CONSTRAINT_ERROR and so no
exception is raised. The AVO ruled this behavior acceptable and
the test NA.

CB86001F redefines package SYSTEN, but TEXT_IO is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXT_10.

C96005B requires the range of type DURATION to be different ¢rom
those of its base type; in this implementation they are the same.

CE2108A, CE2108C, CE3112A are inapplicable because temporary files
(sequential, direact, text) do not have names.

CE2107B..E (4 tests), CE21076..I (3 tests), CE2111D, CE2111H,
CE2110B, CE3111B..E (4 tests), CE3114B, CE3I115A and CE3108A are
inapplicable because mulitiple internal files cannot be associated
with the same external fite. The proper exception is raised when
nultiple access is attempted.

T

TEST INFORMATION

. EE2401D0 wuses instantiations of the package DIRECT_IO with
unconstrained array types. This instantiation is rejected by this
compiler.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such wmodifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that wasn’t anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 13 Class B tests.

The following Class B tests were split because syntax errors 2t one point
resulted in the compiler not detecting other errors in the test:

B22003A 824009A B29001A 8380034 B38009A
B380098 BS1001A B91001H BC2001D BC2001E
BC32048 BC32058 BC3205D

3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced by
the SYSTEAK Ada Compiler VAX/VMS Version 1.8 was submitted to the AVF by
the applicant for review. Analysis of these results demonstrated that the
compiler successfully passed all applicable tests, and the compiler
exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the SYSTEAM Ada Compiler VAX/VMS Version 1.8 using ACVC Version
1.9 was conducted on-site by a validation team from the AVF., The
configuration consisted of a VAX 8530 host operating under VMS, Version
4.7, .

3-4

0N

L

LA
Wi

P

A
"l.\\

T

£33

&

€.

TEST INFORMATION

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that nake use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring wmodifications during the prevalidation
testing vere included in their modified form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host

computer.

After the test files were loaded to disk, the full set of tests was
compiled on the VAX 8530. Object files were linked and executed on the
target. Results were printed from the host computer.

The compiler was tested using command scripts provided by SYSTEAM K& and
reviewed by the validation team. The compiler was tested using all default
settings.

Tests vere compiled, 1inked, and executed (as appropriate) using a single
host computer. Test output, compilation 1listings of Class B tests and
tests that raised an error during compilation, and job logs were captured
on magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3.7.3 1lest Site

Testing was conducted at SYSTEAM K6 at Karlsruhe and was completed on
88-05-24.

3-5

6

&3

6

APPENDIX A
DECLARATION OF CONFORMANCE

SYSTEAN KG has submitted the following Declaration of
Conformance concerning the SYSTEAM Ada Compiler
VAX/VMS, Version 1.8.

€3

Lo
)

DECLARATION OF CONFORMANCE

DECLARATION OF CONFORMANCE

Compiler Implementor: SYSTEAM KG
Ada Validation Facility: IABG m.b.H., Dept 52T
Ada Compiler Validation Capability (ACVC) Version: 1.9

gase Configuration

Base Compiler Name: SYSTEAM Ada Compiler VAX/VNS

Base Compiler Version: Version 1.8
Host and Target Architecture ISA: VAX 83530 VNS 4.7

Implementor's Declaration

1, the undersigned, representing SYSTEAM K6, have implemented no deliberate
extensions to the Ada Language Standard ANSI/MIL~STD-1815A in the
compiler(s) listed in this declaration. I declare that SYSTEAM KG is the
owner of record of the Ada language compiler(s) listed above and, as such,
is responsible for maintaining said compiler(s) in conformance to
ANSI/MIL-STD-1815A. All certificates and registrations for Ada language
compiler(s) listed in this declaration shall be made only in the owner's
corporate nale. .

,ﬁ k_.\~/ (i/
! Date: 24 May 1988

SYSTEAM K&
Dr. Winterstein,

Qwner’s Declaration

1, the undersigned, representing SYSTEAM K€, take full responsibility for
implementation and maintenance of the Ada compiler(s) listed above, and
agree to the public disclosure of the final Validation Summary Report. 1
further agree to continue to comply with the Ada trademark policy, as
defined by the Ada Joint Program Office. I declare that all of the Ada
language compilers listed, and their host/target performance, are in
compliance with the Ada Language Standard ANSI/MIL-STD-1815A.

Date: 24 May 1988

- . - — - - - - e - - - - -

SYSTEAN K& . -
Dr. Vinterstein,

APPENDIX B
APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of the Ada Standard, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of
the SYSTEAM Ada Compiler VAX/VMS, Version 1.8, are described in the
following sections, which discuss topics in Appendix F of the Ada Standard.
They are taken from the vendor's User Nanual. Implementation-specific
portions of the package STANDARD are also included in this appendix.

B-1

The specification of the package STANDARD is outlined here; it contains all predefined
identifiers of the VAX/VMS implementation.

The operations defined for the predefined types are not mentioned since they are
implicitly declared according to the language rules. Anonymous types (such as
UNIVERSAL_INTEGER) are not mentioned either.

PACKAGE standard IS
TYPE boolean IS (false, true);
TYPE short_short_integer 1S RANGE - 128 .. 127;
TYPE short_integer IS RANGE - 32.768 .. 32.767;
TYPE integer IS RANGE - 2.147.483.648 .. 2.147.483.647;

TYPE short.float IS DIGITS 6 RANGE
- hex16#0.7FFF _FF8#E+32 .. 16#0.7FFF _FF8#E+32;
-- the corresponding machine type is F-FLOAT

TYPE float IS DIGITS 9 RANGE
- 16#0.7FFF_FFFF_FFFF_FFB#E+32 ..
16#0.7FFF_FFFF_FFFF_FF8#E+32;
-- the corresponding machine type is D-FLOAT

TYPE longfloat IS DIGITS 156 RANGE
- 16#0.7FFF FFFF_FFFF_FC#E+256 ..
16#0.7FFF _FFFF_FFFF_FC#E+256;
-- the corresponding machine type is G-FLOAT

TYPE long.long float IS DIGITS 33 RANGE
- 16#0.7FFF FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_C#E+4096 .
16#0.7FFF FFFF _FFFF_FFFF _FFFF_FFFF _FFFF_C#E+4096;
== the corresponding machine type is H-FLOAT

-~ TYPE character IS ... as in [ADA,Appendix C)
-~ FOR character USE ... as in [ADA,Appendix C]
-~ PACKAGE escii IS ... as in [ADA,Appendix C]
-~ Predefined subtypes and string types ... as in [ADA, Appendix C)

TYPE duration IS DELTA 2#1.0%#E-14 RANGE
-~ 131.072.0 .. 131.071.999.938.964.843.75;

- “ e

Appendix F Chapter 15

15 Appendix F

This is the Appendix F required in [ADA], in which all implementation-dependent
characteristics of an Ada implementation are described.

F.1 Implementation-dependent pragmas

The form, allowed places, and effect of every implementation-dependent pragma is
stated in this section.

F.1.1 Predefined language pragmas

The form and allowed places of the following pragmas are defined by the language;
their effect is (at least partly) implementation-dependent and stated here. All the
other pragmas listed in Appendix B of [ADA|] are implemented and have the effect
described there.

CONTROLLED
has no effect.

INLINE
Inline expansion of subprograms is supported with following restrictions:
the subprogram must not contain declarations of other subprograms, tasks, generic
units or body stubs. If the subprogram is called recursively only the outer call of
this subprogram will be expanded.

INTERFACE
is only implemented for Assembly language; see §13.9 of this manual for details.

MEMORY SIZE
has no effect.

OPTIMIZE
has no effect.

PACK
see §13.1.

Chapter 15 Appendix F

PRIORITY

There are two implementation-defined aspects of this pragma: First, the range of
the subtype PRIORITY, and second, the effect on scheduling (§5) of not giving
this pragma for a task or main program. The range of subtype PRIORITY is 0
.. 15, as declared in the predefined library package SYSTEM (see §F.3); and the
effect on scheduling of leaving the priority of a task or main program undefined by
not giving pragma PRIORITY for it is the same as if pragma PRIORITY 0 had
been given (i.e. the task has the lowest priority). Moreover, in this implementation
the package SYSTEM must be named by a with clause of a compilation unit if
the predefined pragma PRIORITY is used within that unit.

SHARED :
has no effect. Note, however, that the implementation of tasking is such that every
variable is treated as if pragma SHARED had been given for it.

STORAGE_UNIT
has no effect.

SUPPRESS

has no effect, but see §F.1.2 for the implementation-defined pragma SUP-
PRESS_ALL.

SYSTEM NAME
has no effect.

F.1.2 Implementation-defined pragmas

SQUEEZE
see §13.1.

SUPPRESS_ALL
causes all the run_time checks described in {ADA,§11.7] except ELABORA-
TION_CHECK to be suppressed; this pragma is only allowed at the start of a
compilation before the first compilation unit; it applies to the whole compilation.

Appendix F Chapter 15

F.2 Implementation-dependent attributes

The name, type and implementation-dependent aspects of every implementation-dependent
attribute is stated in this chapter.

F.2.1 Language-defined attributes

The name and type of all the Ia.nguagé-deﬁned attributes are as given in [ADA]. We
note here only the implementation-dependent aspects.

ADDRESS
The value delivered by this attribute applied to an object is the address of the
storage unit where this object starts.

For any other entity this attribute is not supported and will return the value
SYSTEM.null_address.

SIZE
The only implementation-dependent aspect is as follows:
for an object of an unconstrained record type the value delivered by this attribute
depends on the actual constrained, i.e. for different constraints the attribute will
possibly yield different values.

STORAGE SIZE
The value delivered by this attribute applied to an access type is as follows:
If a length specification (STORAGE SIZE, see §13.2) has been given for that type
(static collection), the attribute delivers that specified value.
In case of a dynamic collection, i.e. no length specification by STORAGE_SIZE
given for the access type, the attribute delivers the number of storage units cur-
rently allocated for the collection. Note that dynamic collections are extended if
needed.
If the collection manager (cf. Chapter 12) is used for a dynamic collection the
attribute delivers the number of storage units currently allocated for the collection.
Note that in this case the number of storage units currently allocated may be
decreased by release operations.

The value delivered by this attribute applied to a task type or task object is as
follows:

If a length specification (STORAGE _SIZE, see §13.2) has been given for the task
type, the attribute delivers that specified value; the default value is returned
elsewhere.

Chapter 15 Appendix F

F.2.2 Implementation-defined attributes

There are no implementation-defined attributes.

Appendix F

Chapter 15

F.8 Specification of the package SYSTEM

The package SYSTEM of ([ADA,§13.7]) is reprinted here with all implementation-

dependent characteristics and extensions filled in.

PACKAGE system IS

TYPE address IS PRIVATE:
TYPE name IS (vax._vms);

system_name : CONSTANT name := vax_vms;
storage_unit : CONSTANT := 8;
memory-size : CONSTANT := 2 #x 31;

min_int ¢ CONSTANT := - 2_.147.483_648;
max_int : CONSTANT := 2_147_483_647:
max.digits : CONSTANT := 33;
max_mantissa : CONSTANT := 31;

fine_delta : CONSTANT := 2#1 .0%#E-~31;
tick : CONSTANT := 0.2E-6:;

SUBTYPE priority IS integer RANGE O .. 15;
SUBTYPE external_address IS string:
SUBTYPE byte IS integer RANGE 0..285;

TYPE long_word IS ARRAY (0..3) OF byte:
PRAGMA PACK (long_word);

FUNCTION convert_address

(addr : external_address) RETURN address;

FUNCTION convert_address

(addr : address) RETURN external_address; -

FUNCTION convert_address
(addr : long word) RETURN address;

FUKCTION convert._address
(addr : address) RETURN long_word;

FUNCTION "+" (addr : address; offset : integer)
RETURN address;

PRIVATE
-- private declarations
END system;

Chapter 15 - Appendix F

F.4 Restrictions on representation clauses

See §§13.2-13.5 of this manual.

F.5 Conventions for implementation-generated names

There are no implementation-generated names denoting implementation-dependent
components (|[ADA,§13.4]).

F.6 Expressions in address clauses

Address clauses (|JADA,§13.5]) are supported only for objects except for task objects.
The object starts at the given address.

F.7 Restrictions on unchecked conversions

The implementation does support unchecked type conversions for all kind of source-
and target types with the restriction that the target type must not be an unconstrained
array type. Note that if

target_type’size > source_type'size,

the result value of the unchecked conversion is unpredictable.

F.8 Characteristics of the input-output packages

The implementation-dependent characteristics of the input-output packages as defined
in Chapter 14 of [ADA] are reported in Chapter 14 of this manual.

Input-output Chapter 14

14 Input-output

In this chapter we follow the section numbering of Chapter 14 of |[ADA] and provide
notes for the use of the features described in each section.

14.1 External files and file objects

The total number of open files (including the two standard files) must not exceed 18.
Any attempt to exceed this limit raises the exception USE_.ERROR.

The only form of file sharing which is allowed is shared reading. If two or more files
are associatel with the same external file at one time (regardless of whether these files
are declared in the same program or task), all of these (internal) files must be opened
with the mode IN_FILE. An attempt to open one of these files with a mode other than
IN_FILE will raise the exception USE_ERROR.

Files associated with terminal devices (which is only legal for text files) are excepted
from this restriction. Such files may be opened with an arbitrary mode at the same
time and associated with the same terminal device.

The following restrictions apply to the generic actual parameter for ELEMENT_TYPE:

e input/output of access types is not defined.

e input/output of unconstrained array types is only possible with a variable record
format.

o for RMS sequential [relative or indexed] files the size of an object to be input or
output must not be greater than 32767 [16383].

« input/output is not possible for an object whose (sub)type has a size which is not
a multiple of SYSTEM.STORAGE_UNIT. Such objects may only exist for types
for which a representation clause or pragma SQUEEZE is given. USE_ERROR
will be raised by any attempt to read or write such an object or to open or create
a file for such a (sub)type.

14.2 Sequential and direct files

Sequential and direct files are represented by RMS sequential, relative or indexed files
with fixed-length or variable-length records. Each element of the file is stored in one
record.

Chapter 14 Input-output

14.2.1 File management

Since there is a lot to say about this section, we shall introduce subsection numbers
which do not exist in [ADA].

14.2.1.1 The NAME and FORM paramecters

The NAME parameter string must be a VMS file specification string and must not
contain wild cards, even if that would specify a unique file. The function NAME will
return a file specification string (including version number) which is the file name of
the file opened or created.

The Syntax of the FORM parameter string is defined by:

form parameter ::= [form_specification { , form.specification }]
form_specification ::= keyword [=> value]

keyword ::= didentifier

value ::= identifier | string literal | numeric_literal

For identifier, numeric literal, string literal see [ADA,Appendix E]. Only an integer
literal is allowed as numeric_literal (see [ADA,§2.4]).

In the following, the form specifications which are allowed for all files are described.
ALLOCATION => numeric_literal

This value specifies the number of blocks which are allocated initially; it is only used
in a create operation and ignored in an open operation. The value of ALLOCATION
in the form string returned by the function FORM specifies the initial allocation size
for existing files too.

EXTENSION => numeric_literal

Input-output Chapter 14

This value specifies the number of blocks by which a file is extended if necessary; the
value 0 means that the RMS default value is taken. For existing files, this value is only
used for processing between an open and a close operation.

For details see the VAX-11 / RMS Reference Manual.

MAX_RECORD SIZE => numeric.literal

This value specifies the maximum record size in bytes. The value 0 indicates that
there is no limit; for direct files, this value is only allowed for indexed files, whereas
for sequential files there is no such restriction. This form specification is only allowed
for files with variable record format. If the value is specified for an existing file it must
agree with the value of the external file.

For files with fixed-length records, the maximum record size equals
ELEMENT_TYPE'SIZE / SYSTEM.STORAGE_UNIT. If a fixed record format is
used, all objects written to a file which are shorter than the maximum record size are
filled up with zeros (ASCIL.NUL).

RECORD_FORMAT => VARIABLE [FIXED

This form specification is used to specify the record format. If the format is specified
for an existing file it must agree with the format of the external file.

. Chapter 14 Input-output

14.2.1.2 Sequential files

A sequential file is represented by a RMS sequential file with either fixed-length or
variable-length records which may be specified by the form parameter.

If a fixed record format is used, all objects written to a file which are shorter than the

maximum record size are filled up with zeros (ASCILNUL).

END OF _FILE

If the keyword END_OF FILE is specified for an existing file in an open for an output
file, then the file is opened at the end of the file; i.e. the existing file is extended and
not rewritten. This keyword is only allowed for an output file; it only has an effect in
an open operation and is ignored in a create.

The default form string for a sequential file is :

"ALLOCATION => 3, EXTENSION =0, "&
"RECORD _FORMAT => VARIABLE, MAX.RECORD_SIZE => 0 "

The default form may be used for all types (except for those excluded in §14.1).

14.2.1.8 Dsrect files

The implementation dependent type COUNT defined in the package specification of
DIRECTJO has an upper bound of :

COUNT'LAST = 2.147_483.647 (= INTEGER’LAST)

Direct files are represented by RMS sequential files with fixed-length records or by
relative or indexed files with either fixed-length or variable-length records. For in-
dexed files, the record index is stored as unsigned four bytes binary value in the first
four bytes of each record. If not explicitly specified, the maximum record size equals
ELEMENT_TYPE’'SIZE / SYSTEM.STORAGE.UNIT.

BUCKET.SIZE => numeric_literal

Input-output Chapter 14

This value specifies the number of blocks (one block is 512 bytes) for one bucket; the
value 0 means that the value is evaluated by RMS to the minimal number of blocks
which is necessary to contain one record. The value must be in the range from 0 up
to 32. This form specification is only allowed for relative or indexed files. If the value
is specified for an existing file it must agree with the value of the external file.

ORGANIZATION => INDEXED | RELATIVE | SEQUENTIAL

This form specification is used to specify the file organization. If the organization is
specified for an existing file it must agree with the organization of the external file.

The default form string for a direct file is :

"ALLOCATION => 3, EXTENSION => 0, "&
"ORGANIZATION => SEQUENTIAL, RECORD_FORMAT => FIXED"

Indexed files with variable-length records and a maximum record size of 0 may be used
for all types (except for those excluded in §14.1). Relative files with variable-length
records may also be used for all types, but in this case a maximum record size must be
specified explicitly. Sequential, relative or indexed files with fixed-length records may
not be used for unconstrained array types.

Chapter 14 Input-output

14.3 Text input/output

Text files are represented as sequential files with variable record format. One line is
represented as a sequence of one or more records; all records except for the last one
have a length of exactly MAX_RECORD SIZE and a continuation marker (ASCIL.LF)
at the last position. A line of length MAX RECORD._SIZE is represented by one
record of this length. A line terminator is not represented explicitly in the external
file; the end of a record which is shorter than MAX_ RECORD_SIZE or which has
length exactly MAX_RECORD _SIZE and does not have a continuation marker as its
last character is taken as a line terminator.

The value MAX RECORD _SIZE may be specified by the form string for an output file
and it is taken from the external file for an input file; for an input file, the value 0 stands
for the default of 255. For all files which are created, the value MAX_RECORD_SIZE
is used for the file attribute MRS (maximum record size).

A page terminator is represented as a record consisting of a single ASCIL.FF. A record
of length zero is assumed to precede a page terminator if the record before the page
terminator is another page terminator or a record of length MAX RECORD.SIZE
with a continuation marker at the last position; this implies that a page terminator is
preceded by a line terminator in all cases.

A file terminator is not represented explicitly in the external file; the end of the file is
taken as a file terminator. A page terminator is assumed to precede the end of the file
if there is not explicitly one as the last record of the file. For input from a terminal, a
file terminator is represented as ASCIL.SUB (= CTRL/Z).

Input-output Chapter 14

14.8.1 File management

In the following, the form specifications which are only allowed for text files or have a
special meaning for text files are described.

CHARACTER_ID

The predefined package TEXT_ 1O was designed for sequential text files; moreover, this
implementation always uses sequential files with a record structure, even for terminal
devices. It therefore offers no language-defined facilities for modifying data previously
written to the terminal (e.g. changing characters in a text which is already on the ter-
minal screen) or for outputting characters to the terminal without following them by a
line terminator. It also has no language-defined provision for input of single characters
from the terminal (as opposed to lines, which must end with a line terminator, so that
in order to input one character the user must type in that character and then a line
terminator) or for suppressing the echo on the terminal of characters typed in at the
keyboard.

For these reasons,in addition to the input/output facilities with record structured ex-
ternal files, another form of input/output is provided for text files: It is possible to
transfer single characters from/to a terminal device. This form of input/output is spec-
ified by the keyword CHARACTER O in the form string. If character i/o is specified,
no other form specification is allowed and the file name must denote a terminal device.

For an infile, the external file (associated with a terminal) is considered to contain
a single line. An ASCILSUB (= CTRL/Z) character represents an line terminator
followed by a page terminator followed by a file terminator. Arbitrary characters
(including all control characters except for ASCIL.SUB) may be read; a character read
is not echoed to the terminal.

For an outfile, arbitrary characters (including 2ll control characters and escape se-
quences) may be written on the external file (terminal). A line terminator is rep-
resented as ASCII.CR followed by ASCILLF, a page terminator is represented as
ASCILFF and a file terminator is not represented on the external file.

Chapter 14 Input-output

Only for input files :
PROMPTING => string._literal

This string is output on the terminal before an input record is read if the input file is
associated with a terminal; otherwise this form specification is ignore<.

Only for output files :
MAX_RECORD_SIZE => numericliteral

This value specifies the maximum length of a record in the external file. Each record
which is not the last record of a line has exactly this maximum record size, with a
continuation marker (ASCIL.LF) at the last position. The value must be in the range
2 .. 255. If a file is created, the specified value (or the default of 255) is used for the
file attribute MRS (maximum record size) of the external file. If the value is specified
for an existing file it must be identical to the value of the external file.

The default form string for an input text file is :

"ALLOCATION => 3, EXTENSION => O, PROMPTING => nnn» "

The default form string for an output text file is :

"ALLOCATION => 3, EXTENSION => O, MAX_RECORD.SIZE => 255"

14.8.2 Default input and output files

The standard input (resp. output) file is associated with the sysiem default logical
names SYSSINPUT (resp. SYS$OUTPUT) of VMS. If a program reads from the
standard input file, the logical name SYSSINPUT must denote an existing file. If a

,

Input-output Chapter 14

program writes to the standard output file, a file with the logical name SYSSOUTPUT
is created if no such file exists; otherwise the existing file is extended.

The qualifiers /INPUT and /OUTPUT may be used for the VMS RUN command to
associate VMS files with the standard files of TEXT IO.

The name and form strings for the standard files are :

standard_input : NAME => "SYSS$INPUT:"
FORM => "PROMPTING => "nxn» "

standard_output : NAME => "SYS$OUTPUT: *
FORM => "MAX_RECORD_SIZE => 255"

14.8.10 Implementation-defined types

The implementation dependent types COUNT and FIELD defined in the package
specification of TEXT IO have the following upper bounds :

COUNT'LAST = 2.147.483.647 (= INTEGER'LAST)

FIELD'LAST = 285

Chapter 14 Input-output

14.4 Exceptions in input-output

For each of NAME_ERROR, USE_ ERROR, DEVICE ERROR and DATA _ERROR we
list the conditions under which that exception can be raised. The conditions under
which the other exceptions declared in the package IO_EXCEPTIONS can be raised
are as described in [ADA,§14.4).

NAME_ERROR

e in an OPEN operation, if the specified file does not exist;

e in a CREATE operation, if the NAME string contains an explicit version number
and the specified file already exists;

o if the name parameter in a call of the CREATE or OPEN procedure is not a legal
VMS file specification string; for example, if it contains illegal characters, is too
long or is syntactically incorrect; and also if it contains wild cards, even if that
would specify a unique file.

USE_ERROR

o if an attempt is made to increase the total number of open files (including the two
standard files) to more than 18;

o whenever an error occurred during an operation of the underlying RMS system.
This may happen if an internal error was detected, an operation is not possible for
reasons depending on the file or device characteristics, a size restriction is violated,
a capacity limit is exceeded or for similar reasons;

o if the function NAME is applied to a temporary file;

» if the characteristics of the external file are not appropriate for the file type; for
example, if the record size of a file with fixed-length records does not correspond
to the size of the element type of a DIRECT IO or SEQUENTIAL IO file. In
general it is only guaranteed that a file which is created by an Ada program may
be reopened by another program if the file types and the form strings are the
same;

o if two or more (internal) files are associated with the same external file at one
time (regardless of whether these files are declared in the same program or task),
and an attempt is made to open one of these files with mode other than IN_FILE.
However, files associated with terminal devices (which is only legal for text files)
are excepted from this restriction. Such files may be opened with an arbitrary
mode at the same time and associated with the same terminal device;

+ ifagiven FORM parameter string does not have the correct syntax or if a condition
on an individual form specification described in §§14.2-3 is not fulfilled;

« if an attempt is made to open or create a sequential or direct file for an element
type whose size is not a multiple of SYSTEM.STORAGE_UNIT; or if an attempt
is made to read or write an object whose (sub)type has a size which is not a

Input-output Chapter 14

- multiple of SYSTEM.STORAGE_UNIT (such situations can only arise for types

for which a representation clause or pragma SQUEEZE is given);

DEVICE_ERROR

is never raised. Instead of this exception the exception USE_ERROR is raised
whenever an error occurred during an operation of the underlying RMS system.

DATA_ERROR

the conditions under which DATA _ERROR is raised in the package TEXT_1O are
laid down in |[ADA]; the followmg notes apply to the packages SEQUENTIAL_IO
and DIRECTO:

by the procedure READ if the size of a variable-length record in the external file
to be read exceeds the storage size of the given variable or else the size of a fixed-

length record in the external file to be read exceeds the storage size of the given
variable which has exactly the size ELEMENT_TYPE’size.

In general, the exception DATA_ERROR is not raised by the procedure READ if
the element read is not a legal value of the element type.

by the procedure READ if an element with the specified position in a direct file

does not exist; this is only possible if the file is associated with a relative or an
indexed file.

14.6 Low level input-output

We give here the specification of the package LOW _LEVEL_IO:

PACKAGE low_level_io IS

TYPE device_type IS (null_device):

TYPE data_type IS
RECORD
NULL;
END RECORD;

PROCEDURE send._control (device : device_type;
data : IN OUT data_type);:

PROCEDURE receive.control (device : device_type:
data : IN OUT data.type);

Chapter 14 Input-output

END low_level_ io;

Note that the enumeration type DEVICE_TYPE has only one enumeration value,
NULL.DEVICE; thus the procedures SEND_.CONTROL and RECEIVE_.CONTROL
can be called, but SEND_CONTROL will have no eflect on any physical device and the
value of the actual parameter DATA after a call of RECEIVE_CONTROL will have
no physical significance.

APPENDIX C
TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such

as the maximum length of an input line and invalid file names. A test that

makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin

with a dollar sign. A value must be substituted for each of these names

:e{ore the test is run. The values used for this validation are given
elow.

Nape_and Meaning. Yalue

$BIG_ID1 (1..79 => "A', 80 => 1)
Identifier the size of the
maximum input line length with
varying last character.

$BIG_1ID2 (1..79 => "A', 80 => '2")
Identifier the size of the
naximum input line length with
varying last character.

¢BIG_ID3 (1..40=)"A" ,41=>"1",42..80=>'A")
Identifier the size of the
paximum input line length with
varying middle character.

$BIC_1D4 (1..40=)"A" ,41=>72",42..80=)>'A")
Identifier the size of the
naximum input line length with
varying middle character.

$BIG_INT_LIT (1..77=>0°)¢ 298"
An integer literal of value 298
vith enough leading zeroes so
that it is the size of the
naximum line length,

C-1

1ot

o
i3

PRy
Ry

LV frs

LR

TEST PARAMETERS

Nape_and Meaning

$BIG_REAL_LIT
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
paximum line length,

#BIC_STRING!
A string literal which when
catenated vith BIG_STRING2
yields the image of BIG_ID1.

$BIG_STRING2
A string literal which when

catenated to the end of
BIG_STRING1 yields the image of
BIG_IDI.

$BLANKS
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNT_LAST
A universal integer
literal vhose value is
TEXT_IO.COUNT'LAST.

$FIELD_LAST
A universal integer
literal whose value is

TEXT_IO.FIELD’LAST.

$FILE_NAME_VITH_BAD_CHARS
An external file name that
either contains invalid
characters or is too 1long.

$FILE_NAME_VITH_WILD_CARD_CHAR
An external file name that
either contains a wild card
character or is too long.

$GREATER_THAN_DURATION
A wuniversal real literal that
lies between DURATION®BASE'LAST
and DURATION’LAST or any value
in the range of DURATION,

c-2

Yalue

(1..74=2>'0")8"69.0E1"

(1=>79%,2..412>'A" ,42=5°"")

(123"7,2,.40=) A" ,412>"1" ,422>'"")

(1..60 2> *)

2147483647

255

dbcl@def.dat

abctdef.dat

0.0

4o S
FYI

Name_and_Meaning

$GREATER_THAN_DURATION_BASE_LAST
A universal real literal that is
greater than DURATION®BASE'LAST.

$ILLEGAL_EXTERNAL_FILE_NAME1
An external file name which
contains invalid characters.

$ILLEGAL_EXTERNAL_FILE_NANE2
An exterpal file name which
is too 1long.

$INTEGER_FIRSY
A universal integer literal
vhose value is INTEGER'FIRST.

$INTEGER_LAST
A universal integer literal
whose value is INTEGER’LAST.

$INTEGER_LAST_PLUS_1
A universal integer literal
vhose value is INTEGER'LAST + 1.

$LESS_THAN_DURATION
A universal real 1literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION,

$LESS_THAN_DURATION_BASE_FIRST
A universal real literal that is
less than DURATION®BASE'FIRST.

ONAX_DIGITS
Maximum digits supported for
floating-point types.

$NAX_IN_LEN
Naximum input line length
permitted by the implementation.

S$NAX_INT
A universal integer literal
vhose value is SYSTEM.NAX_INT.

SMAX_INT_PLUS_1?
A universal integer literal
vhose value is SYSTEM.MAX_INT+i,

Yalue

TEST PARAMETERS

200_000.0

x¢lyz.dat

(1..60 => 'A")

-2147483648

2147483647

2147483648

-200_000.0

33

80

2147483647

2147483648

N \

- TEST PARAMETERS

% Name_and_Meaning Yolue
SMAX_LEN_INT_BASED_LITERAL *2:78(3..77=>0")8" 112

= A universal integer based
e literal whose value is 2¥11%

vith enough leading zeroes in
Az the mantissa to be MAX_IN_LEN
N 1ong. '
5 $MAX_LEN_REAL _BASED_LITERAL "16:"8(4,.76=>'0")8"F E:"
= A universal real based literal

whose value is 16:F.E: with
s, enough leading zeroes in the
e pantissa to be MAX_IN_LEN long.
oy $NAX_STRING_LITERAL (1=>'"*,2..79=>"A",80 =>'"")
e A string literal of size

MAX_IN_LEN, including the quote
e characters.

$MIN_INT -2147483648

73 A universal integer literal
“ whose wvalue is SYSTEM.MIN_INT,
s SNAME SHORT_SHORT_INTEGER

~ A name of a predefined numeric
type other than FLOAT, INTEGER,

% SHORT_FLOAT, SHORT_INTEGER,
= LONG_FLOAY, or LONG_INTEGER.
- $NEG_BASED_INT 16RFFFFFFFER

A based integer literal whose
highest order nonzero bit

= falls in the sign bit
i position of the representation
for SYSTEM.MAX_INT,
c-4
I

"~
Y
e_‘j

APPENDIX D
VITHDRAWUN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The <following 27 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"Al-ddddd" is to an Ada Commentary.

B28B003A: A basic dectaration (line 36) incorrectly follows a2
Jater declaration,

E28005C: This test requires that "PRAGMA LIST (ON);" not appear
in a listing that has been suspended by a previous "PRAGNA LISY
(OFF);“; The Ada Standard is not clear on this point, and the
natter will be reviewed by the AJPO.

C34004A: The expression in line 168 yields a value outside the
range of the target type T, but there is no handler for
CONSTRAINT_ERROR.

C35502P: The equality operators in line 62 and 69 should be
inequality operators.

A35902C: The assignment in line 17 of the nominal upper bound of
a fixed-point type to an object raises CONSTRAINT_ERROR, for that
value lies outside of the actual range of the type.

C35904A: The elaboration of the fixed-point ;ubtype on line 28
vrongly raises CONSTRAINT_ERROR, because its upper 'bound exceeds
that of the type.

C35904B: The subtype declaration that is expected to raise
CONSTRAINT_ERROR when its compatibility is checked against that of
various types passed as actual generic parameters, may in fact
raise NUMERIC_ERROR for reasons not anticipated by the test.

C35A03E and C35A03R: These tests assume that attribute °’'MANTISSA

returns 0 when applied to a fixed-point type with a null range,
but the Ada Standard does not support this assumption.

D-1

LAY

VITHDRAWN TESTS

C37213H: The subtype declaration of SCONS in line 100 is
incorrectly expected to raise an exception when elaborated.

€37213J: The aggregate in line 451 incorrectly raises
CONSTRAINT_ERROR.

€37215C, C37215€, C372156 and C3721S5H: Various discriminant
constraints are incorrectly expected to be incompatible with type
CONS.

C38102C: The fixed-point conversion on 1tine 23 wrongly raises
CONSTRAINT_ERROR. ~

CA1402A: The attribute *STORAGE_SIZE is incorrectly applied to an
object of an access type.

C45332A: The test expects that either an expression in line 52
will raise an exception or else MACHINE_OVERFLOWS is FALSE.
However, an implementation may evaluate the expression correctly
using a type with a wider range than the base type of the
operands, and MACHINE_OVERFLOWS may stil] be TRUE.

C45614C: The function call of IDENT_INT in 1line 15 wuses an
argument of the wrong type.

A74106C, C85018B, C87B04B and CC1311B: A bound specified in a
fixed-point subtype declaration 1lies outside of that calculated
for the base type, raising CONSTRAINT_ERROR. Errors of this sort
occur at lines 37 & 59, 142 & 143, 16 & 48, and 252 & 253 of the
four tests, respectively.

BC3105A: Lines 159 through 168 expect error messages, but these
lines are correct Ada.

AD1AO1A: The declaration of subtype SINT3 raises CONSTRAINT_ERROR
for implementations which select INT'SIZE to be 16 or greater.

CE2401H: The record aggregates in lines 105 and 117 contain the
vrong values.

CE3208A: This test exopects that an attempt to open the default
output file <(after it was closed) with wmode IN_FILE raises
NAME_ERROR or USE_ERROR; by Commentary AI-00048, MODE_ERROR should
be raised.

D-2

.. ‘
b ' . .

e g A e IJ-.I.- [P PP e T SR 1Y R e L 3 ,. o SN oy
. m O .u.~, *

N

———— e - —— - —

MATION

Crormn ey

e

INFOR

e ————e e . ® o —

o ———— > e S T =

p

Y

[

i

N
o

on.
A

o
s

ERRATA DTIC# A204 279

D -A oK azg

Ada Compiler Validation Summary Report:

Compiler Name: SYSTEAN Ada Compiler VAX/VMS
Compiler Version: Version 1.8

Certificate Number: 88052411.09118
Host and target: VAX 8530 under VMS, Version 4.7
Testing Completed 88-05-24 Using ACVC 1.9

This report has been reviewed and is approved.

Lo oo

IABG m.b.H., Dept SIT

Dr. H. Hummel
Einsteinstrasse 20

8012 Ottobrunn

Federal Republic of Germany

0 Lllp

Ada Validation Organization
Dr. John F. Kramer

Institute for Defense Analyses
Alexandria VA 22311

Ada J&int Program Office
Virginia L. Castor
Director

Department of Defense
Washington DC 20301

